
CS 464: Introduction to Machine Learning

Fall 2023-2024

Term Project

Final Progress Report

Group 3

Instructor:

Ayşegül Dündar Boral

Team Members:
Mennan Gök (22003074)

Ömer Tuğrul (22002723)
Selin Ataş (21902858)
Gökay Balcı (22003796)

Ömer Asım Doğan (21903042)

1

Contents

1 Introduction 3

2 Dataset Description 3

3 Preprocessing the Data 3

3.1 Data Balancing and Stratified Sampling . 4

3.2 Gray Scaling . 4

3.3 Image Resizing . 4

3.4 Data Augmentation . 4

3.5 Multinomial Logistic Regression . 5

3.6 Random Forest . 5

3.7 Convolutional Neural Network . 5

3.8 Transfer Learning . 6

4 Training 6

4.1 Multinomial Logistic Regression . 6

4.2 Random Forest . 8

4.3 Convolutional Neural Network . 10

4.3.1 Model 1 . 11

4.3.2 Model 2 . 12

4.3.3 Model 3 . 14

4.4 Transfer Learning . 15

5 Challanges Encountered 17

6 Coding Environment 18

7 Workload Distribution of Team Members 19

References 20

2

1 Introduction

Ornithology often requires the careful task of manually identifying bird species. This process is particu-
larly challenging in diverse ecosystems due to the vast number of species and intra-species variations. The
Bird Species Image Classification Project tackles this challenge by utilizing machine learning algorithms
to automate identification.

These algorithms can process large image datasets and select complex patterns, significantly enhancing
the efficiency of species identification. This technological advancement is crucial as biodiversity research
and conservation depend on precise and rapid data collection. Advanced classification models of the
project promise to transform avian biodiversity conservation by enabling rapid and accurate identification
of various bird species, providing vital support for researchers and public officials in diverse environments.

The “Bird Species Image Classification Project” includes two different machine learning models, which
are Multinomial Logistic Regression and Random Forest, and a Deep Learning model, namely a Convo-
lutional Neural Network capable of accurately identifying and classifying different bird species based on
images that are provided from [1]. We also utilized two different transfer learning models, EfficientNet-
B0 and ResNet50, to leverage pre-trained models on our dataset, aiming to achieve high accuracy and
improved performance.

Figure 1: The Histogram of the Database of 525 Bird Species

2 Dataset Description

In this project, the dataset BIRDS 525 SPECIES-IMAGE CLASSIFICATION [1] is utilized. It has a
collection of 84635 training images, 2625 test images (5 images per species), and 2625 validation images
(5 images per species) of 525 different types of birds. The dataset includes high-quality images such
that there is only one bird in each image and the bird typically takes up at least 50% of the image. All
images are (224 X 224 X 3) color images in jpg format. The training set is not balanced, having a varying
number of files per species. Therefore, we preprocessed the data to use balanced classes. Each species has
at least 130 training image files. Also, the number of images for each species in the test and validation
folders is few compared to the train images, so we needed to increase them. Furthermore, the data set
also includes a file birds.csv. This csv file contains 5 columns which are named relative file path to an
image file, bird species class name, and scientific name with class index and data subset (train, test, or
valid).

3 Preprocessing the Data

The successful development and training of accurate machine learning models for bird species classification
rely heavily on thoughtful data preparation. In this context, several crucial steps have been undertaken
to ensure the dataset’s balance, informativeness, and variability, optimizing the models’ capacity to
generalize across diverse avian species. From strategic data balancing and stratified sampling to the
implementation of grayscale processing, image resizing, and data augmentation, each preprocessing step
plays a pivotal role in enhancing the models’ robustness. This comprehensive approach not only addresses
challenges related to imbalanced class representation but also considers computational efficiency and the
intricate nature of bird images. The following sections detail each preprocessing step, shedding light on
the methodologies employed to create a well-structured dataset that lays a solid foundation for training

3

effective bird species classification models.

3.1 Data Balancing and Stratified Sampling

Ten bird species with the highest number of images were identified, and 100 images were selected from
each of these species. The remaining images of these birds were added to the test and validation files to
increase their quantity. Hence, we generated “RGB train/test/val” folders. This step was essential as
initially, only 5 images per species were allocated for testing and validation, which was insufficient. If
some species are represented by a higher number of images than others, it can lead to a biased model
that performs well only for those overrepresented species. By identifying the top 10 species and selecting
an equal number of images for each, the dataset becomes more balanced, allowing the model to learn to
identify each species with equal proficiency. Furthermore, we increased the efficiency of the models by
reducing data samples.

3.2 Gray Scaling

To simplify computational cost and eliminate the color bias in the detection process, we created gray
scaled folders “gray train/test/val” from “RGB train/test/val” folders. Reducing the images from three
channels (red, green, blue) to a single channel allows the model to focus more on shapes and textures than
color—a key feature in bird identification. This approach also reduces issues related to varying lighting
conditions, which can alter color perception, and helps reduce the risk of overfitting, as the model has
fewer features to process.

3.3 Image Resizing

The size of all images in the dataset was 224x224 pixels resolution. For ML models, we resized the
images to 64x64 pixels resolution to reduce computational complexity; however, in CNN and Transfer
Learning models we utilized the original sized images. The reason for this decision is that ML models
may not efficiently handle higher-resolution images like CNNs. This resizing is sufficient for extracting
key features needed for classification, offering a balanced compromise between detail and computational
efficiency. Conversely, for CNNs and Transfer Learning models, images were retained at the original
resolution of 224x224 pixels, benefiting from the advanced capability to process and extract finer details
from high-resolution images of these models, which is crucial for accurate and nuanced classification tasks.

Parameter Value
Total Classes 10

Total Train Images 1000
Total Valid Images 629
Total Test Images 634

Table 1: Dataset Information

3.4 Data Augmentation

The data augmentation code enhances the dataset through a series of transformations aimed at in-
creasing the robustness of the model. It provides variability by applying random horizontal and vertical
flips, random rotations of up to 10 or 15 degrees, and random crops that resize up to 224x224 pixels.
Also, it performs arbitrary affine transformations with translations, adjusts brightness and contrast with
color change, and lastly converts the augmented images into tensors suitable for PyTorch.

In conclusion, the preprocessing steps aim to create a balanced, informative, and varied dataset for
training bird species classification models. The strategies employed address issues such as imbalanced
class representation, computational efficiency, and the diverse nature of bird images. It means the mod-
els’ ability to generalize and perform well on a variety of bird species will be better due to carefully
preprocessed data.

4

1 train_transforms = transforms.Compose ([

2 transforms.RandomHorizontalFlip (),

3 transforms.RandomRotation (10),

4 transforms.RandomResizedCrop (224, scale =(0.9 , 1.1)),

5 transforms.ToTensor ()

6])

Listing 1: Transforms for Training

1 valid_test_transforms = transforms.Compose ([

2 transforms.RandomHorizontalFlip (),

3 transforms.RandomRotation (15),

4 transforms.ColorJitter(brightness =0.2, contrast =0.2) ,

5 transforms.RandomResizedCrop (224, scale =(0.9 , 1.1)),

6 transforms.ToTensor ()

7])

Listing 2: Transforms for Validation and Testing

Parameter Value
Total Classes 10

Total Train Images 5000
Total Valid Images 3145
Total Test Images 3170

Table 2: Dataset Information

3.5 Multinomial Logistic Regression

Although we proposed using SVM in our project, we changed this method to Multinomial Logistic
Regression. The decision to transition from an SVM to an MLR model in the project was mainly due to
the need for a more computationally efficient approach. Compared to SVMs, Logistic Regression is less
demanding in terms of computational resources and handles large datasets more effectively, which is a
key advantage for image classification tasks. Additionally, Logistic Regression is inherently better suited
for tasks involving multiple classes, such as distinguishing various bird species. It also has the upside of
being easier to interpret.

3.6 Random Forest

Random Forest is an ensemble learning method that combines the predictions of multiple decision
trees. For this project, Random Forest is considered as a potential model due to its ability to handle
diverse features and provide insights into feature importance. Image features, extracted using methods
like color histograms or texture analysis, can be fed into the Random Forest model. The ensemble nature
of Random Forest helps mitigate overfitting and enhances the generalization capabilities of the model.

3.7 Convolutional Neural Network

CNNs are a natural fit for image classification tasks due to their ability to automatically learn hierarchi-
cal features from images. In this project, a CNN architecture has been selected for its capacity to capture
spatial hierarchies and patterns in bird images. The chosen CNN architecture involves convolutional
layers for feature extraction, followed by fully connected layers for classification.

5

3.8 Transfer Learning

Lastly, we have generated Transfer Learning models to enhance the efficiency and accuracy of the
bird species classification task. Transfer Learning allows us to utilize a pre-trained neural network,
capitalizing on the rich feature extraction capabilities these networks have developed through training on
extensive, diverse datasets. Thanks to Transfer Learning, we adapted these pre-existing neural networks
to our specific classification task with minimal additional training. By doing so, we bypass the intensive
computational costs typically associated with training deep learning models from scratch. The pre-trained
models bring a wealth of nuanced image recognition capabilities, which, when fine-tuned with our bird
image dataset, create a powerful tool for identifying species across various environments and conditions.

4 Training

Model trained with four different algorithms. We used Random Forest and Multinomial Logistic
Regression from machine learning models and CNN and Transfer Learning from deep learning models.
Every model was trained with 4 different kinds of data consisting of RGB, Augmented RGB, Greyscale,
and Augmented Grayscale. While the RGB-trained models were tested on the RGB test set, Grayscale-
trained ones were tested on the Grayscale test set. We compared the results of the trained models with
each other and themselves.

4.1 Multinomial Logistic Regression

For this model, we first standardized the data using “Standart Scaler”. This is one of the major steps
before training the model since logistic regression is sensitive to the scale of input features. The solver
is the SAGA for our model. It is one of the available algorithms in scikit-learn. The multinomial in the
model indicates that the algorithm should use the multinomial logistic regression, which is suitable for
more than two classes. Iteration number is “100” which indicates the number of iterations for the solver
to converge. The ”fit transform“ method computes the mean and standard deviation of each feature in
the training set and then transforms the data accordingly.

Compared to the baseline accuracy of 0.1, we can say that our model is learning patterns in the
data and performing better than a random guess.The highest accuracy of the model was 0.5425 when
we trained with Augmented RGB data. The lowest was 0.2933 when we trained with the Augmented
Greyscale data.

These results show that the MLR model is effectively capturing the patterns in the input data and
making accurate predictions. The success of the model is indicative of effective feature discrimination
and successful training.

Similar to the Random Forest Algorithm results, the confusion matrices show the model mostly mixed
the first 4 classes with each other while classifying.

In conclusion, the MLR exceed our expectations with a 0.55 accuracy in image classification.

6

Precision Recall F1-Score Support

0 0.55 0.44 0.49 82
1 0.50 0.43 0.46 74
2 0.41 0.37 0.39 67
3 0.16 0.13 0.15 67
4 0.67 0.65 0.66 60
5 0.54 0.71 0.61 58
6 0.53 0.56 0.55 57
7 0.61 0.67 0.64 57
8 0.49 0.64 0.56 56
9 0.37 0.38 0.37 56

Accuracy 0.49 634
Macro Avg 0.48 0.50 0.49 634
Weighted Avg 0.48 0.49 0.48 634

(a) Multinomial Logistic Regression Classifier Evaluation
Metrics with RGB data (b) Confusion Matrix with RGB data

Figure 2: Multinomial Logistic Regression Classifier Evaluation with RGB

Precision Recall F1-Score Support

0 0.52 0.44 0.48 82
1 0.55 0.57 0.56 74
2 0.37 0.30 0.33 67
3 0.30 0.21 0.25 67
4 0.70 0.75 0.73 60
5 0.58 0.69 0.63 58
6 0.65 0.60 0.62 57
7 0.65 0.74 0.69 57
8 0.62 0.73 0.67 56
9 0.42 0.54 0.47 56

Accuracy 0.54 634
Macro Avg 0.54 0.56 0.54 634
Weighted Avg 0.53 0.54 0.53 634

(a) Multinomial Logistic Regression Classifier Evaluation
Metrics with Augmented RGB data (b) Confusion Matrix with Augemented RGB data

Figure 3: Multinomial Logistic Regression Classifier Evaluation

Precision Recall F1-Score Support

0 0.39 0.38 0.39 82
1 0.20 0.18 0.19 74
2 0.20 0.09 0.12 67
3 0.23 0.21 0.22 67
4 0.27 0.33 0.30 60
5 0.45 0.55 0.50 58
6 0.28 0.28 0.28 57
7 0.37 0.53 0.43 57
8 0.27 0.36 0.31 56
9 0.24 0.18 0.20 56

Accuracy 0.30 634
Macro Avg 0.29 0.31 0.29 634
Weighted Avg 0.29 0.30 0.29 634

(a) Multinomial Logistic Regression Classifier Evaluation
Metrics with Gray scale data (b) Confusion Matrix with gray scale data

Figure 4: Multinomial Logistic Regression Classifier Evaluation with Gray scale data

7

Precision Recall F1-Score Support

0 0.34 0.33 0.33 82
1 0.18 0.15 0.16 74
2 0.20 0.15 0.17 67
3 0.14 0.16 0.15 67
4 0.32 0.33 0.33 60
5 0.47 0.47 0.47 58
6 0.30 0.39 0.34 57
7 0.39 0.51 0.44 57
8 0.35 0.30 0.33 56
9 0.24 0.21 0.23 56

Accuracy 0.29 634
Macro Avg 0.29 0.30 0.29 634
Weighted Avg 0.29 0.29 0.29 634

(a) Multinomial Logistic Regression Classifier Evaluation
Metrics with Augmented Gray scale data (b) Confusion Matrix with Augmented Gray scale data

Figure 5: Multinomial Logistic Regression Classifier Evaluation with Augmented Gray scale data

In addition to these different datasets, Principal Component Analysis is applied to RGB dataset and
it is used to train MLR model. Evaluation results are given on the table below:

Precision Recall F1-Score Support

0 0.56 0.43 0.48 82
1 0.53 0.45 0.49 74
2 0.31 0.31 0.31 67
3 0.17 0.15 0.16 67
4 0.62 0.63 0.63 60
5 0.52 0.71 0.60 58
6 0.54 0.54 0.54 57
7 0.59 0.63 0.61 57
8 0.51 0.62 0.56 56
9 0.36 0.36 0.36 56

Accuracy 0.47 634
Macro Avg 0.47 0.48 0.47 634
Weighted Avg 0.47 0.47 0.47 634

Table 3: Multinomial Logistic Regression Classifier with PCA Evaluation Metrics

4.2 Random Forest

1 # Train Random Forest Classifier

2 rf_classifier_augrgb = RandomForestClassifier(n_estimators =10,

random_state =464)

3 rf_classifier_augrgb.fit(X_train , y_train)

Listing 3: Train Random Forest Classifier

We used 10 decision trees to classify data into 10 different classes for the Random Forest algorithm.
This helped us handle the complexity of sorting data while making sure our model does not get too
specific (overfitting).

Compared to the baseline accuracy of 0.1, we can say that the Random Forest model is learning
patterns in the data and performing better than a random guess.

The highest accuracy of the model was 0.3754 when we trained with Augmented RGB data. The
lowest was 0.2555 when we trained with the Augmented Greyscale data. We can infer from these results
that the Random Forest performing poorly on the dataset. The dataset might be challenging for this
model, containing complex patterns or noise that the model is struggling to learn. Also, features used
for classification may not be informative enough or may not adequately represent the differences between
classes. The results of the Random Forest were the worst among all models.

8

The confusion matrices show the model mostly mixed the first 4 classes with each other while classi-
fying birds.

Precision Recall F1-Score Support

0 0.27 0.37 0.31 82
1 0.29 0.34 0.31 74
2 0.26 0.27 0.26 67
3 0.19 0.12 0.15 67
4 0.41 0.37 0.39 60
5 0.55 0.64 0.59 58
6 0.43 0.35 0.38 57
7 0.57 0.67 0.61 57
8 0.68 0.46 0.55 56
9 0.29 0.25 0.27 56

Accuracy 0.38 634
Macro Avg 0.39 0.38 0.38 634
Weighted Avg 0.38 0.38 0.37 634

(a) Random Forest Classifier Evaluation Metrics with
RGB data (b) Confusion Matrix with RGB data

Figure 6: Random Forest Classifier Evaluation with RGB data

Precision Recall F1-Score Support

0 0.22 0.26 0.24 82
1 0.22 0.38 0.28 74
2 0.18 0.13 0.15 67
3 0.17 0.16 0.17 67
4 0.17 0.18 0.18 60
5 0.51 0.40 0.45 58
6 0.44 0.35 0.39 57
7 0.30 0.40 0.35 57
8 0.35 0.25 0.29 56
9 0.07 0.04 0.05 56

Accuracy 0.26 634
Macro Avg 0.26 0.26 0.25 634
Weighted Avg 0.26 0.26 0.25 634

(a) Random Forest Classifier Evaluation Metrics (b) Confusion Matrix with grayscale data

Figure 7: Random Forest Classifier Evaluation with Gray Data

Precision Recall F1-Score Support

0 0.23 0.24 0.24 82
1 0.19 0.27 0.23 74
2 0.18 0.19 0.19 67
3 0.17 0.18 0.17 67
4 0.21 0.18 0.19 60
5 0.60 0.57 0.58 58
6 0.42 0.35 0.38 57
7 0.36 0.49 0.41 57
8 0.31 0.18 0.23 56
9 0.17 0.11 0.13 56

Accuracy 0.27 634
Macro Avg 0.28 0.28 0.28 634
Weighted Avg 0.28 0.27 0.27 634

(a) Random Forest Classifier Evaluation Metrics (b) Confusion Matrix with Augmented Gray scale

Figure 8: Random Forest Classifier Evaluation with augmented Gray scale data

In addition to these different datasets, Principal Component Analysis is applied to RGB dataset and
it is used to train MLR model. Evaluation results are given on the table below:

9

Precision Recall F1-Score Support

0 0.21 0.17 0.19 82
1 0.20 0.24 0.22 74
2 0.18 0.24 0.21 67
3 0.10 0.10 0.10 67
4 0.32 0.38 0.35 60
5 0.31 0.26 0.28 58
6 0.08 0.05 0.06 57
7 0.37 0.35 0.36 57
8 0.44 0.43 0.43 56
9 0.16 0.14 0.15 56

Accuracy 0.23 634
Macro Avg 0.24 0.24 0.24 634
Weighted Avg 0.23 0.23 0.23 634

Table 4: Random Forest Classifier with PCA Evaluation Metrics

4.3 Convolutional Neural Network

Figure 9: Architecture of the main CNN model.

The structure of the main CNN model is explained as given below:

• Inherits from nn.Module, a base class for all neural network modules in PyTorch.

• Consists of 3 convolutional blocks each consisting of:

– A convolutional layer (nn.Conv2d) that extracts features from the images.

– Batch normalization (nn.BatchNorm2d) to stabilize and accelerate training.

– A ReLU activation function for non-linearity.

– A max-pooling layer (nn.MaxPool2d) to reduce the spatial dimensions of the output.

• self.flatten flattens the output of the last convolutional block to feed it into fully connected
layers.

• Fully connected layers (self.fc layers) are a series of linear layers and ReLU activations to
perform the final classification. The last layer outputs 10 values, corresponding to the number of
bird species.

10

• A sigmoid activation function is applied to the output.

Model 1 in the following section is based on the architecture described above. Now, three different
CNN models are trained on RGB datasets with augmentation and without augmentation. Validation
evaluation metric and confusion matrix for test data set are given above. Additionally model descriptions
can be found in Table 3 and Table 4.

4.3.1 Model 1

(a) Confusion matrix (%84.10 Ac-
curacy) (b) Training Loss per Epoch (c) Training Loss per Iteration

Figure 10: Validation results for Model 1 with augmented data

(a) Confusion matrix (%75.20 Ac-
curacy) (b) Training Loss per Epoch (c) Training Loss per Iteration

Figure 11: Validation results for Model 1 with non-augmented data

Test results of the model are given here for each dataset:

(a) Confusion matrix (%80.44 Ac-
curacy)

(b) Confusion matrix (%76.66 Ac-
curacy)

Figure 12: Test results for Model 1 with non-augmented data

11

4.3.2 Model 2

(a) Confusion matrix (%84.42 Ac-
curacy) (b) Training Loss per Epoch (c) Training Loss per Iteration

Figure 13: Validation results for Model 2 with augmented data

(a) Confusion matrix (%72.66 Ac-
curacy) (b) Training Loss per Epoch (c) Training Loss per Iteration

Figure 14: Validation results for Model 2 with non-augmented data

Test results of the model are given here for each dataset:

(a) Confusion matrix (%81.70 Ac-
curacy)

(b) Confusion matrix (%68.77 Ac-
curacy)

Figure 15: Test results for Model 2 with non-augmented data

12

Layer Type Details
Input Layer Three input channels for RGB images.
Convolutional Block 1

• Conv: 32 channels, 3x3 kernel, padding 1

• Batch Norm

• ReLU

• Max-Pool: 2x2 kernel, stride 2

Convolutional Block 2

• Conv: 64 channels, 3x3 kernel, padding 1

• Batch Norm ReLU

• Max-Pool: 2x2 kernel, stride 2

Convolutional Block 3

• Conv: 128 channels, 3x3 kernel, padding 1

• Batch Norm ReLU

• Max-Pool: 2x2 kernel, stride 2

Convolutional Block 4

• Conv: 256 channels, 3x3 kernel, padding 1

• Batch Norm ReLU

• Max-Pool: 2x2 kernel, stride 2

Flatten Layer Flattens the output for fully connected layers.
Fully Connected Layers

• Linear 1: 256 * 14 * 14 input features, 512 output features,
ReLU

• Linear 2: 512 input, 256 output, ReLU

• Linear 3: 256 input, 128 output, ReLU

• Linear 4: 128 input, 10 output

Activation Function Softmax applied to the final linear layer’s output.
Output Final output tensor with 10 values (assuming 10 classes) repre-

senting class probabilities.

Table 5: Summary of CNN Model 2 Architecture

13

4.3.3 Model 3

(a) Confusion matrix (%70.91 Ac-
curacy) (b) Training Loss per Epoch (c) Training Loss per Iteration

Figure 16: Validation results for Model 3 with augmented data

(a) Confusion matrix (%51.99 Ac-
curacy) (b) Training Loss per Epoch (c) Training Loss per Iteration

Figure 17: Validation results for Model 3 with non-augmented data

Test results of the model are given here for each dataset:

(a) Confusion matrix (%70.82 Ac-
curacy)

(b) Confusion matrix (%55.99 Ac-
curacy)

Figure 18: Test results for Model 3 with non-augmented data

14

Layer Type Details
Input Layer Three input channels for RGB images.
Convolutional Block 1

• Conv: 16 channels, 3x3 kernel, padding 1

• Batch Norm ReLU

• Max-Pool: 2x2 kernel, stride 2

Convolutional Block 2

• Conv: 32 channels, 3x3 kernel, padding 1

• Batch Norm ReLU

• Max-Pool: 2x2 kernel, stride 2

Convolutional Block 3

• Conv: 64 channels, 3x3 kernel, padding 1

• Batch Norm ReLU

• Max-Pool: 2x2 kernel, stride 2

Convolutional Block 4

• Conv: 128 channels, 3x3 kernel, padding 1

• Batch Norm ReLU

• Max-Pool: 2x2 kernel, stride 2

Global Average Pooling Applied using nn.AdaptiveAvgPool2d(1), reducing spatial dimen-
sions to 1x1

Flatten Layer Output of global average pooling is reshaped into a 1D tensor for
fully connected layers

Fully Connected Layers

• Linear 1: 128 input features, 64 output features, ReLU

• Linear 2: 64 input features, 10 output features

Output Final output tensor with 10 values (assuming 10 classes) repre-
senting class probabilities

Table 6: Summary of CNN Model 3 Architecture

4.4 Transfer Learning

Transfer learning is using a pre-trained neural network on one task and adapting it for a new task. This
approach is particularly useful when the amount of labeled data available for the target task is limited.
The basic idea behind transfer learning is that the knowledge acquired by a model from solving one
problem can be beneficial for solving another related problem. Instead of training a neural network from
scratch on the target task, transfer learning allows the model to inherit and fine-tune the features and
representations learned during the training on an often larger dataset. In our project, we have developed
two models with transfer learning using EfficientNet-B0 and ResNet50 as our base models.

EfficientNet-B0 is the baseline pre-trained model of the EfficientNet family which are known for
their efficiency in terms of both computational resources and model size while achieving state-of-the-art
performance in various computer vision tasks, such as image classification and object detection [3]. In
order to adopt the pre-trained EfficientNet-B0 to our image classification task with 10 classes, we send
the output from the pre-trained model to a GlobalAveragePooling2D Layer and a Linear Layer (Dense)

15

with 10 units.

ResNet50 is the middle-ground model of the Residual Networks family, in terms of number of layers
within its structure, 50. The term ”Residual” refers to the use of residual blocks, which are designed
to address the vanishing gradient problem in deep neural networks. Residual blocks introduce skip
connections, also known as shortcut connections or identity mappings, that allow the network to learn
residual functions. This enables the training of very deep networks without degradation in performance.[2]

To adapt the pre-trained ResNet50 to our image classification task, we send the output from the
pre-trained model to a GlobalAveragePoolin2D Layer, a Dense Layer with 1024 units, and a last Dense
Layer for output with 10 units.

For both EfficientNet-B0 and ResNet50 models, we have used early stoppings to ensure that we
maintain the best model in the case of an overfitting. For most cases, this approach helped us to prevent
overfitting.

We have experimented with 8 different models, 4 for EfficientNetB0 and 4 for ResNet50, and each
architecture with RGB, Grayscale, RGB Augmented, and Grayscale Augmented Dataset. Here is the
confusion matrix and test accuracies for this experiment:

(a) EfficientNetB0 Confusion Matrix with RGB Trained
(b) EfficientNetB0 Confusion Matrix with Augmented
RGB Trained

Figure 19: EfficientNetB0 Confusion Matrices

(a) EfficientNetB0 Confusion Matrix with Grayscale
Trained

(b) EfficientNetB0 Confusion Matrix with Augmented
Grayscale Trained

Figure 20: EfficientNetB0 Confusion Matrices (continued)

16

(a) ResNet50 Confusion Matrix with RGB Trained
(b) ResNet50 Confusion Matrix with Augmented RGB
Trained

Figure 21: ResNet50 Confusion Matrices

(a) ResNet50 Confusion Matrix with Grayscale Trained
(b) ResNet50 Confusion Matrix with Augmented
Grayscale Trained

Figure 22: ResNet50 Confusion Matrices (continued)

Additionally, performance summary of the ResNet50 and EfficientNetB0 models are given below:

Figure 23: Summary of ResNet50 and EfficientNetB0 models

5 Challanges Encountered

During the course of the project, several challenges were encountered, reflecting the inherent complex-
ities of bird species image classification. These challenges included addressing issues related to dataset
variability, imbalanced class distribution, fine-grained distinctions between visually similar species, and
optimizing model performance for diverse bird images captured under different environmental conditions.
Additionally, the incorporation of advanced techniques such as transfer learning and data augmentation
posed both opportunities and challenges, requiring careful consideration and experimentation to achieve
optimal results in this intricate task of avian image classification.

17

6 Coding Environment

The project was conducted in a Python environment, leveraging a wide range of libraries for data man-
agement, machine learning, and deep learning tasks. The key libraries and their uses are as follows:

• os and pathlib: For interacting with the operating system, facilitating file and directory opera-
tions.

• cv2 (OpenCV): Employed for image reading, processing, and augmentation tasks.

• numpy (np): Utilized for efficient numerical operations and array manipulations.

• pandas (pd): Used for data manipulation and analysis since it offers advanced data structures.

• matplotlib (plt) and seaborn (sns): For creating visualizations, including plots and graphs.

• PIL (Python Imaging Library): Employed for opening, manipulating, and saving images.

• torch and torchvision: Central libraries for building and training deep learning models, including
Convolutional Neural Networks (CNNs), and for data augmentation and transformations.

• sklearn (Scikit-learn): Leveraged for machine learning tasks, including model training, evalua-
tion, and preprocessing.

• PyTorch models (torchvision.models): Used for importing pre-built model ResNet50.

• Keras (part of TensorFlow): Employed for building and training deep learning models, espe-
cially for transfer learning models, EfficientNet-B0 and ResNet50.

• ImageDataGenerator (part of TensorFlow): Used for real-time data augmentation during
model training.

In addition to these libraries, we integrated functionalities for connecting Kaggle and Google Drive,
enabling efficient data retrieval and storage.

18

7 Workload Distribution of Team Members

Member Contributions

Ömer Asım Doğan

• Wrote the progress report.

• Helped with the slides.

• Wrote the Final Report

Gökay Balcı

• Data preprocessing.

• Progress report writing and presentation.

• CNN model experiments and visualization.

• Final Presentation assistance.

Selin Ataş

• Data preprocessing.

• Enhanced train-validation-test split.

• Troubleshooted preprocessing issues.

• Regenerated the CNN model.

• Final report writing and presentation.

Mennan Gök

• SVM, Random Forest, and part of CNN model gen-
eration.

• Progress report assistance.

• Enhanced train-validation-test split.

• Troubleshooted preprocessing issues.

• Transfer Learning models for EfficientNet-B0 and
ResNet50.

Ömer Tuğrul

• Progress report assistance.

• Prepared progress presentation.

• SVM, Random Forest, and part of CNN model gen-
eration.

• Troubleshooted preprocessing issues.

• Added PCA algorithm and data augmentation.

• Final report assistance.

Table 7: Team Members’ Contributions

19

References

References

[1] GPIosenka. ”Birds 525 Species- Image Classification.” Kaggle. Available at: https://www.kaggle.
com/datasets/gpiosenka/100-bird-species.

[2] Shafiq, Muhammad, and Zhaoquan Gu. ”Deep Residual Learning for Image Recognition: A Survey.”
Applied Sciences 12, no. 18 (September 7, 2022): 8972. https://doi.org/10.3390/app12188972.

[3] Wang, Liyuan, Yulong Chen, Xiaoye Wang, Ruixing Wang, Hao Chen, and Yinhai Zhu. ”Re-
search on Remote Sensing Image Classification Based on Transfer Learning and Data Augmen-
tation.” Knowledge Science, Engineering and Management, 2023, 99–111. https://doi.org/10.
1007/978-3-031-40292-0_9.

20

